DNA as the Hereditary Molecule

"Nuclein" (later called nucleic acid) discovered by Fredrick Miescher 1869

Where did he find it?

Salmon sperm and Pus cells.

Why did he look there?

Beats me!!

Essentially ignored until the 1920s as Proteins which are more complex were thought to be more important.

Key Topics in DNA Structure Chapter 10

10.3 Evidence that DNA was the hereditary molecule

Three experiments

10.5 RNA in Viruses (we will cover this later when discussing viruses).

10.6 DNA Chemistry

Know the names of the 5 bases (Adenine, Guanine, Cytosine, Thymine (in DNA) and Uracil (in RNA). Which are purines and pyrimidines?

Know the names of dNTPs building blocks for DNA; dATP (deoxy adenosine triphosphate), dGTP, dCTP, dTTP

Be able to recognize these (as dAMP etc within DNA)

Know the difference between dNTPs and NTPs (C2 OH); mostly ATP (Adenosine triphosphate).

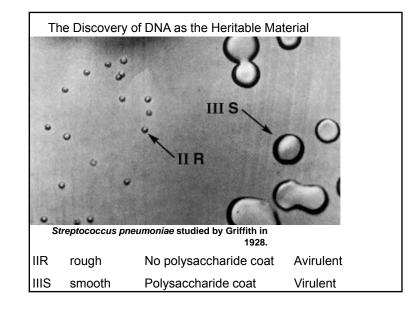
10.7 Structure of DNA --- Know this! Polarity of the molecules

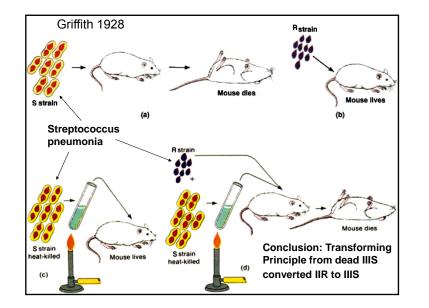
10.8 Alternative Forms of DNA: Who cares!

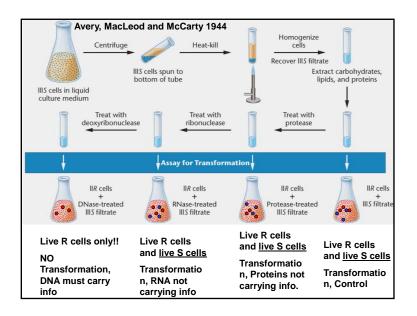
10.9 RNA structure: We will come back to this when we discuss RNA in transcription (Ch 14)

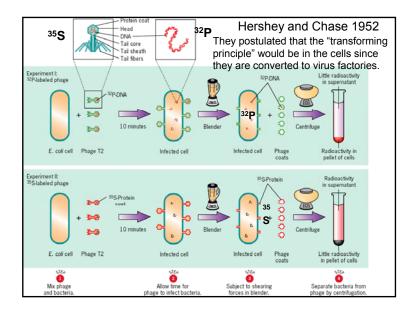
10.10 Analytical Techniques: We will discuss some of these briefly.

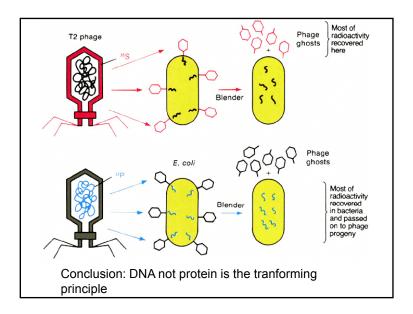
Genome Organization:

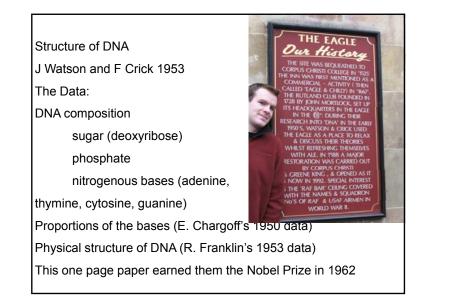

How much DNA do you have and what is it doing?

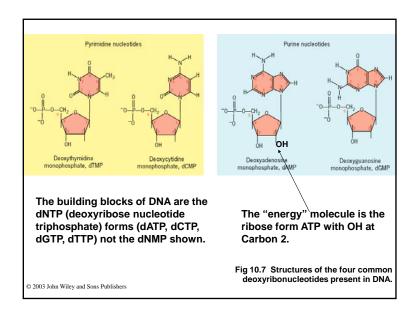

Additional Pieces from around the book

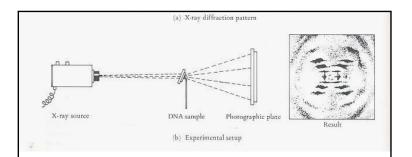

Repetitive DNA: 10.10

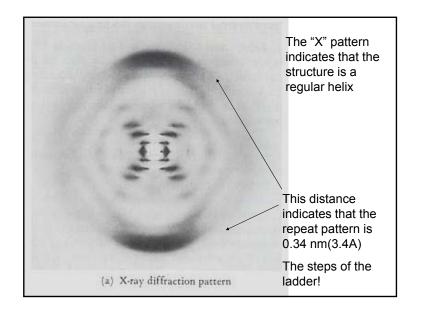

Repetitive DNA, Telomeres, Centromeres, SINES, LINES...:12.6, 12.7

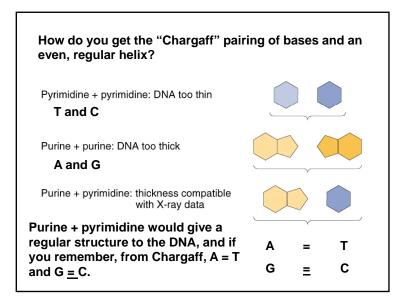

Fragile X and microsatellites or simple sequence repeats (SSRs): 8.10 . Transposons: 22.1

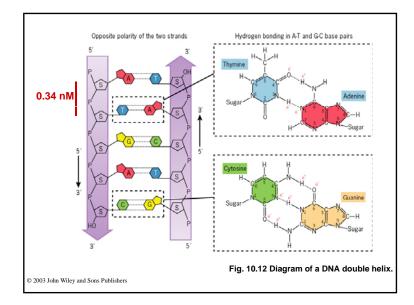


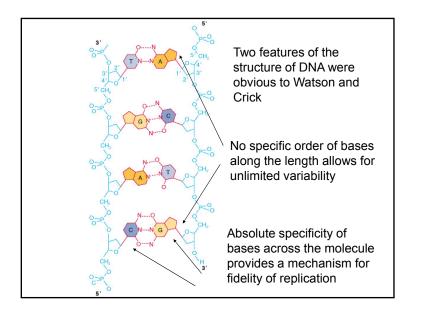


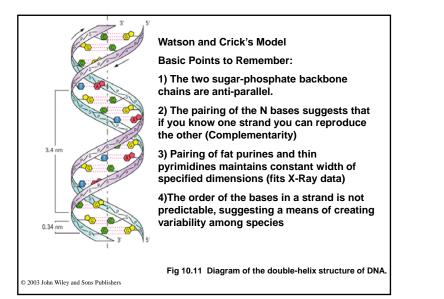


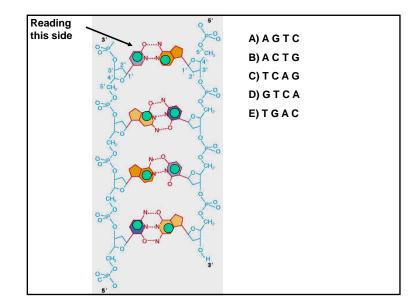


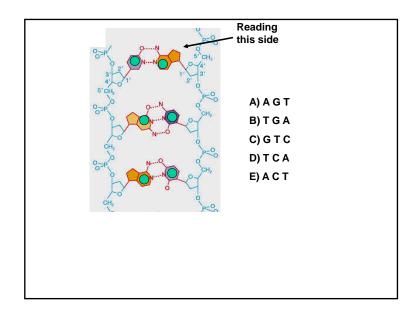


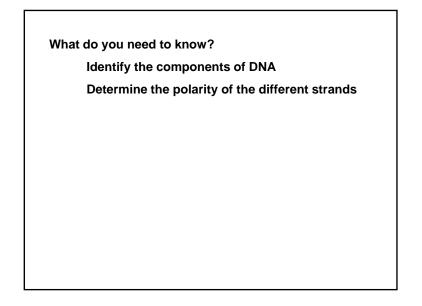

Chargaff's data						
Organism	Tissue	Adenine	Thymine	Guanine	Cytosine	
Escherichia						
coli (K12)	<u> </u>	26.0	23.9	24.9	25.2	
Diplococcus						
pneumoniae	—	29.8	31.6	20.5	18.0	
Mycobacterium						
tuberculosis	—	15.1	14.6	34.9	35.4	
Yeast	—	31.3	32.9	18.7	17.1	
Paracentrotus						
lividus						
(sea urchin)	Sperm	32.8	32.1	17.7	18.4	
Herring	Sperm	27.8	27.5	22.2	22.6	
Rat	Bone marrow	28.6	28.4	21.4	21.5	
Human	Thymus	30.9	29.4	19.9	19.8	
Human	Liver	30.3	30.3	19.5	19.9	
Human	Sperm	30.7	31.2	19.3	18.8	

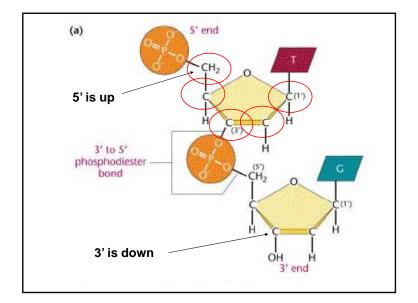


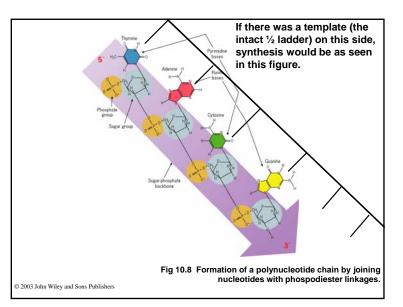

Rosalind Franklin's photos of unpublished work were available to Watson and Crick. These were the best at the time and allowed for clear interpretations. Her work was also published in Nature in 1953.

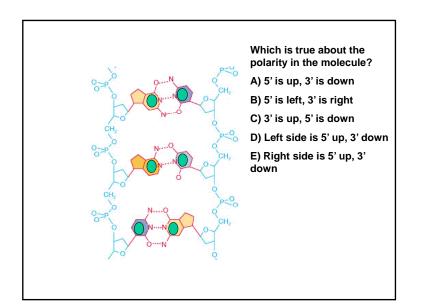












How much DNA do you have?

How much DNA, how many genes do we have?

Our genome (haploid) is about $3x10^9$ bp and we have about 25-35,000 genes.

How long is that DNA have per cell?

 $(0.34 \text{ nm/rung} = 0.34 \text{ x } 10^{-9} \text{ m}) \text{ x } 3 \text{ x } 10^{9} \text{ bp/haploid human}$ genome = 1 meter. Diploid cells have 2 meters.

How many cells in your body?

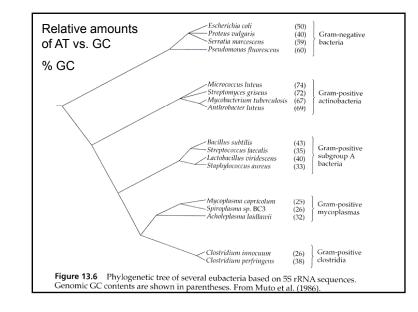
10 billion (10^{10}) in your brain, more than 1 trillion, 10^{12} in your body.

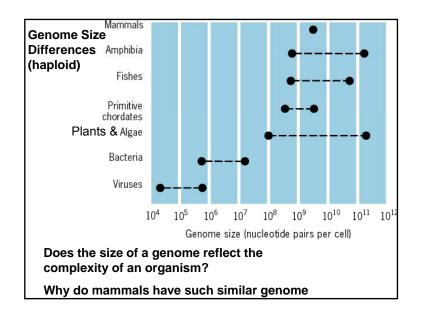
How much total DNA if aligned end to end?

If we go with the 1 trillion number, you have enough DNA to go to the moon (384,000,000 m away) 5200 times. Stretched out DNA is 2 nm wide so the "ribbon" of DNA would be about 10 um wide.

What is it all that DNA doing anyway?

If you have 30 - 35,000 genes and if genes (the coding region that gets translated into proteins) are about 1000 bp long, how much of your DNA is coding?


35,000 x 1000 bp = 35,000,000 bp


What proportion of your total DNA is coding?

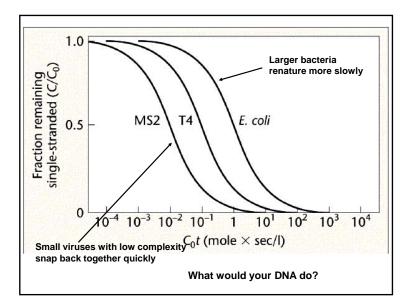
35,000,000/ 3,000,000,000 ≅ 1 -2%

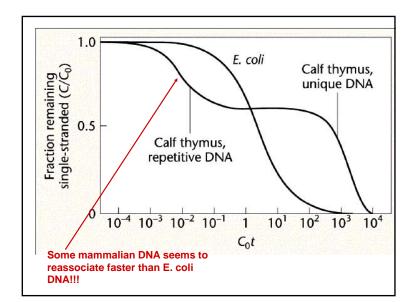
What is the rest of that "junk"?

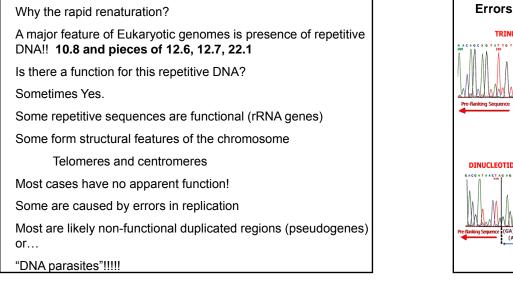
Let's look at the characteristics of DNA among different groups of species to see if some interesting patterns emerge.

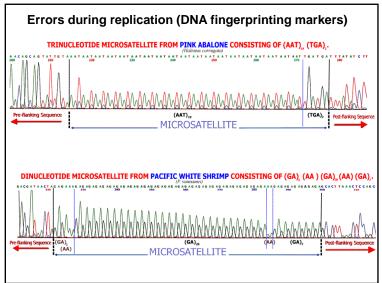
	Species	C value (kb)
Different Species	Navicola pelliculosa (diatom)	35,000
have characteristic	Drosophila melanogaster (fruitfly)	180,000
DNA content	Paramecium aurelia (ciliate)	190,000
DNA comeni	Gallus domesticus (chicken)	1,200,000
	Erysiphe cichoracearum (fungus)	1,500,000
	Cyprinus carpio (carp)	1,700,000
You are here	Lampreta planeri (lamprey)	1,900,000
	Boa constrictor (snake)	2,100,000
	Parascaris equorum (roundworm)	2,500,000
	Carcarias obscurus (shark)	2,700,000
	Rattus norvegicus (rat)	2,900,000
	Xenopus laevis (toad)	3,100,000
	Homo sapiens (human)	3,400,000
	Nicotiana tabaccum (tobacco)	3,800,000
	Paramecium caudatum (ciliate)	8,600,000
	Schistocerca gregaria (locust)	9,300,000
	Allium cepa (onion)	18,000,000
	Coscinodiscus asteromphalus (diatom)	25,000,000
	Lilium formosanum (lily)	36,000,000
	Amphiuma means (newt)	84,000,000
	Pinus resinosa (pine)	68,000,000
Amaghag are 200%	Protopterus aethiopicus (lungfish)	140,000,000
Amoebas are 200x	Ophioglossum petiolatum (fern)	160,000,000
biggerand better?	Amoeba proteus (amoeba)	290,000,000
	Amoeba dubia (amoeba)	670,000,000

Any ideas about wh	and delayers becomen	Genome size range (kb)	Ratio (highest/lowest,
Any ideas about wh	Protists	23,500-686,000,000	29,191
we see such a range	Euglenozoa	98,000-2,350,000	24
in DNA content	Ciliophora	23,500-8,620,000	367
	Sarcodina	35,300-686,000,000	19,433
among flowering plants and fish, but	Fungi	8,800-1,470,000	167
•	Animals	49,000-139,000,000	2,837
not mammals or	Sponges	49,000-53,900	1
birds?	Annelids	882,000-5,190,000	6
	Molluscs	421,000-5,290,000	13
	Crustaceans	686,000-22,100,000	32
Polyploidy of course!!!	Insects	98,000-7,350,000	75
	Echinoderms	529,000-3,230,000	6
	Agnathes	637,000-2,790,000	4
	Sharks and rays	1,470,000-15,800,000	11
Let's look at the second	Bony fishes	382,000-139,000,000	364
	Amphibians	931,000-84,300,000	91
major factor that has altered genome sizes.	Reptiles	1,230,000-5,340,000	4
	Birds	1,670,000-2,250,000	1
	Mammals	1,420,000-5,680,000	4
_	Plants	50,000-307,000,000	6,140
Invasions !!	Algae	80,000-30,000,000	375
	Pteridophytes	98,000-307,000,000	3,133
	Gymnosperms	4,120,000-76,900,000	17
	Angiosperms	50,000-125,000,000	2,500

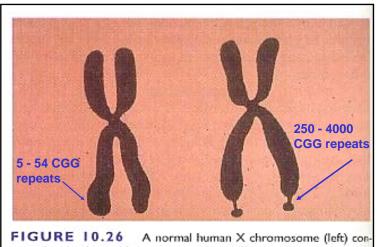
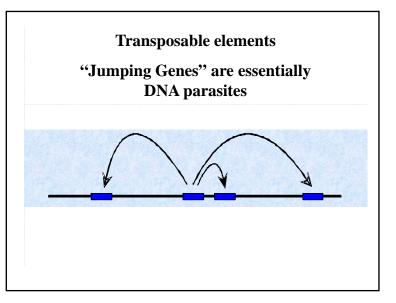
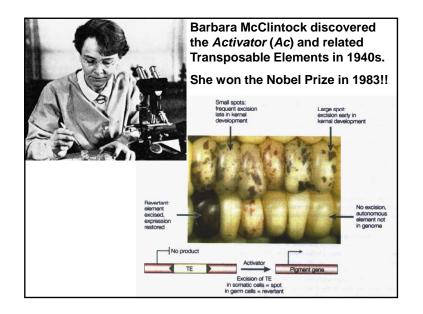
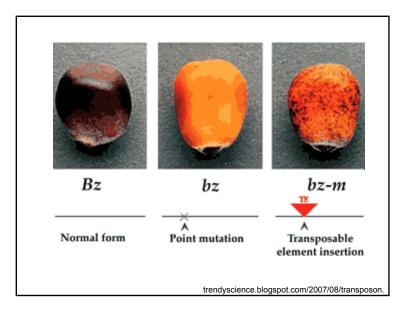
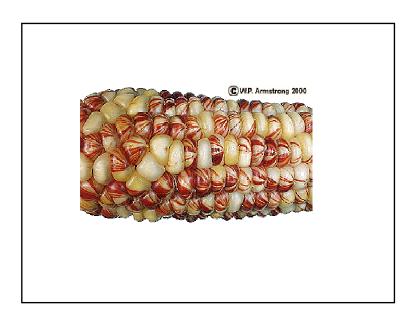


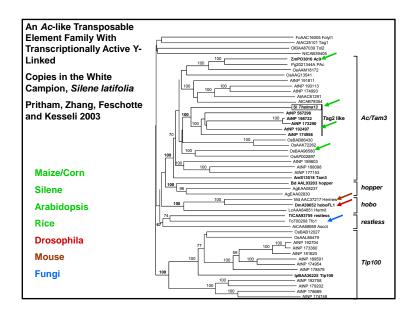

- 1) Extract DNA: pieces of double stranded DNA
- 2) Heat DNA to denature in to single stranded pieces
- 3) Cool slowly and measure the rate that DNA reforms into double stranded pieces
- 4) Plot this process in a "Cot" (concentration-time) curve.


Expectations:

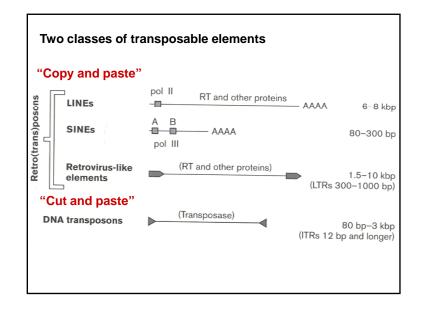

Smaller genomes will snap back together quickly

Genomes with lots of different genes will re-anneal slowly


FIGURE 10.26 A normal human X chromosome (left) contrasted with a fragile X chromosome (right). The "gap" region (near the bottom of the chromosome) is associated with the fragile X syndrome.





CIM	Ee			Flores		170				
Alu							DNA trai mariner	others	Unclassified elements	Total
1188 0.0%	402 1.7%	593 14.6%	271 2.1%	50 1.3%	167 2.6%	34 0.7%	8 0.1%	192 1.5%	60 0.8%	2969 35.5%
	(Сору	/ and	l pas	te			Cut	and pa	ste
1	Alu 188	188 402 0.0% 1.7%	Alu MIR LINE1 188 402 593 0.0% 1.7% 14.6%	Alu MIR LINE1 LINE2 188 402 593 271 0.0% 1.7% 14.6% 2.1%	Alu MIR LINE1 LINE2 HERVs 188 402 593 271 50 0.0% 1.7% 14.6% 2.1% 1.3%	Alu MIR LINE1 LINE2 HERV∈ MalRc 188 402 593 271 50 167	Alu MIR LINE1 LINE2 HERVs MalRs others 188 402 593 271 50 187 34 0.0% 1.7% 14.6% 2.1% 1.3% 2.6% 0.7%	Alu MIR LINE1 LINE2 HERV6 MalRe others mariner 188 402 593 271 50 167 34 8 0.0% 1.7% 14.6% 2.1% 1.3% 2.6% 0.7% 0.1%	Alu MIR LINE1 LINE2 HERV6 MalRe other mainer other 188 402 593 271 50 167 34 8 192 3.0% 1.7% 14.6% 2.1% 1.3% 2.6% 0.7% 0.1% 1.5%	Alu MIR LINE1 LINE2 HERV6 Malke others other <thoter< th=""> <thother< th=""></thother<></thoter<>

Repetitive DNA					
Functional Coding					
Multigene families ex.	Golbin genes				
ribosomal RNA genes					
Functional Structural					
Centromere repeats ex. In mammals ≈ 171bp repeat (not completely conserved)					
Telomere repeats 5'TTAGGGTTAGGGTTAGGG.					
microsatellites) ex.	n as simple sequence repeats (aka TGTGTGTGTG ACACACAC				
Non-functional "parasitic" DNA					
DNA Transposons	ex. Activator (Ac) in Maize and other species				
Retro Transposons	ex. SINEs such as Alu element in humans				