DNA Replication Chapter 11

What you need to know:

Sections 11.1-11.7

You do not need to DNA recombination and Holiday model and Gene conversion sections (last two sections of Chapter 11).

Properties of Three Bacterial (E. coli)	DNA		
polymerases				
DNApol	1	Ш	<u> III</u>	
Initiation of synthesis	No	No	No	
5' to 3' polymerization	Yes	Yes	Yes	
3' to 5' exonuclease activity (proof reading)	Yes	Yes	Yes	
5' to 3' exonuclease activity (repair, primer removal)	Yes	No	No	
Molecules/cell	400	varie	es	15
Number of subunits (genes)	1	1	10	
Size of Molecule (kDaltons)	103	90	430	

5'

How does replication work?

3'

Problem: DNA Pol III uses the 3' end of the primer to begin synthesizing DNA, but RNA primers remain!

7) Solution: Another enzyme (old friend DNA pol I) chews away primer (5' - 3') and can replace space with DNA

Another problem: Once DNA Pol III replaces RNA primer, this piece is not attached to the piece in front of it.

8) Solution: Another enzyme, DNA ligase "clips" the pieces together.

> Synthesis and replacement of RNA primers during replication of the lagging strand of DNA.

TABLE 11.4	Some of the Various <i>E. coli</i> Mutant Genes and Their Products or Role in Replication		
Mutant Gene	Enzyme or Role		
polA	DNA polymerase I		
polB	DNA polymerase II		
dnaE, N, Q, X, Z	DNA polymerase III subunits		
dnaG	Primase		
dnaA, I, P	Initiation		
dnaB, C	Helicase at oriC		
oriC	Origin of replication		
gyrA, B	Gyrase subunits		
lig	Ligase		
rep	Helicase		
ssb	Single-stranded binding proteins		
rnoB	RNA polymerase subunit		

No. of DNA polymerases	E. COli DNApol I, II, III	Eukaryotes αδε, βζ, γ
No. of DNAPol/Cell	15 DNA PolIII	50,000 Alpha
No. of Origins	1	3500 (Drosophila) 25,000(Mammals)
Speed of Synthesis	100 kb/min.	0.5-5 kb/min.
Genome Replication Time	20-40 min.	3 min. (Drosophila) to hours

