

Which of the following mutations within a gene would be the worst?

A) Insert a single base

B) Change the 3rd base of a codon.

C) Change the 2nd base of a codon

D) Delete three bases

E) Delete one base and insert a different base in the next codon

2) Promoters recognized by σ subunit of the RNA polymerase. We are viewing the non-template (coding)					
strand.	-35 region	-10 region			
Strong E. coli	promoters	TATA box			
tyr tRNA rrn D1 rrn X1 rrn (DXE) ₂ rrn E1 rrn A2 N PR N PL T7 A3 T7 A3 T7 A2 id VIII	TCTCAACGTAACACTTTACAGCGGC GATCAAAAAAATACTTGTGCAAAAA ATGCATTTTTCCGCTTGTCTTCCTG CCTGAAATTTCCGGTTGACTCTGA CTGCAATTTTCCTGTTGCCGCCTGC TTTTAATTTCCTCTTGCCGCCTGC TTTAAATTGCCGCCTGC GCAAAAATAAATGCTTGACTCTGTA TAACACCGTGCGGTGTGACATAATT GCAAAAAACGGTGTGACATAAAT GGAAAAAACGGTGACAACATG GGAAAAACAGGTGTTGACAACATG GGAAAAACAGGTGTTGACAACATG GATACAAAACGGTTGTACTTAGC GATACAAATCCCGTTGTACTTGT	GCGTCATTTGATATGATGC.CCCCGCTTCCCG ATGGGATCCCTATAATGGCCCTCCGTGAGAC AGCGAACTCCCTATAATGCGCCTCCATCGACAC GGAGGAAAGCGTAATATAC.GCCCTCCTCGGCAC GGAGGAAAGCCGTATAATGCGCCCTCCATCGACAC GGAGGAAAGCCGTATAATGCGCCACTACTGACAC GCGGGAAGGCGTATAATGCACCACCCCGCCG A.CCTCTGGCGGTGATAATGG.TCTGATGTACTA A.CCACTGGCGGTGATACTGA.GCACATCGACAC A.GTAAACACGGTACCAGTG.ACCCACTCGACAC G.AGTAAACACGGTACCAGTG.ACCCACTCGACA A.GTAAACACGGTACCAGTACTACACCCACTCGACA A.GTAAACACGGTACCAGTACTACAACCGCCACTCGACAG A.GTAAACACGCTACAGATACTACAACTGCACTAGGTA TTCGCGCTTGGTATAATCGCTGGGGGTCAAAG			
Consensus sequences of promoters					
-35 region TTGACAT 15-17 bp TATAAT					
Second mechanism to control gene expression. Transcription begins					
Different promoters have different affinities for σ purine (A or G) are weak!					

Sigma factors recognize different promoters with different efficiencies!! Mechanism for controlling gene expression.

Gene Factor sequence	-35 sequenc	e Sepa	ration -10
<i>rpoD</i> σ ⁷⁰	TTGACA	16-18 bp	ΤΑΤΑΑΤ
rpoH σ ³²	CCCTTGAA	13-15 bp	CCCGATNT
rpoN σ ⁵⁴	CTGGNA	6 bp	TTGCA
fliA σ ²⁸	СТААА	15 bp	GCCGATAA
sigΗ σ ^Η	AGGANPuPu	11-12 bp	GCTGAATCA

How are genes regulation in Bacteria? Are all genes turned on at all times?

1) Different σ subunits recognize different promoters.

2) Different promoters; some are efficient others not.

3) Termination sequences vary and can influence transcription rates.

4) RNA degradation

Other Mutants Discovered: Repressor protein (I gene) has two active sites, one to bind to the Operator and one to bind to lactose. What would a mutation affecting the latter site do? Permanently repress the operator, always turned off: Is "super-repressed" $I^{S} O^{+} Z^{+} Y^{+} A^{+}$ (mutant repressor gene) — lactose present — repressed 0 1 Ζ A Repressor always bound to operator, blocking transcription Lactose-binding site altered; no binding to lactose

The repressor protein has two active sites. If a mutation (X) occurs in the Lacl gene as shown which changes the protein as shown, what will be the result? A) β -galactosidase will be made when lactose is present

- rij p gulaciosidase wili be made witch laciose is present
- B) β -galactosidase will be made when lactose is absent
- C) β-galactosidase will never be made
- D) β -galactosidase will be made when galactose is present
- E) β-galactosidase will be constantly made

So Far...

We see a control system that nicely turns on genes only when they are needed to metabolize a particular product (lactose).

What about control when lactose is present, but the product (glucose) is not needed.

