Mechanisms responsible for Mendel's Postulates are generally conserved. However, expected patterns are sometimes masked, and exceptions for all postulates are common.

Postulate	Reason	Exception
1) Unit factors in pairs	Diploids	Bacteria or polyploids
2) Dominance	Null alleles	Partial Dominance
3) Segregation	Anaphase I	Non-disjunction
4) Genes are Independent	Alignment of of Chromos at Metaphase I	Interactions: Epistasis Linkage

Biochemical bases of phenotypic expression

Variation we see in a trait depends upon:

- 1) Interaction of alleles (dominance relationships)
- 2) Environment
- 3) Number of alleles in a population at a locus
- 4) Number of genes that affect a trait
- 5) Interaction of genes (epistasis)

These factors can mask the underlying mode of inheritance: Mendelian rules can be in effect, but segregation pattern is altered

	Genotype		All freque	ele encies	
Population	MM	MN	NN	p(M)	q(N)
Eskimo	0.835	0.156	0.009	0.913	0.087
Australian	0.024	0.304	0.672	0.176	0.824
Egyptian	0.278	0.489	0.233	0.523	0.477
German	0.297	0.507	0.196	0.550	0.450
Chinese	0.332	0.486	0.182	0.575	0.425
Nigerian	0.301	0.495	0.204	0.548	0.452
SOURCE: W.C. B.	oud Genetics	and the Bace	of Man D	C Heath 1	950

Manx Cats (kind of cute, let's breed them!!!)					
Cross:	Manx	Х	Manx		
1 Normal: 2 Manx					
What is the genetics???					
It segregates (produces different types of progeny).					
Could it be	Could it be test cross?				
No, parents would be different.					
Could it be Het x Het?					
We expect 1:2:1 or 3:1 ratio!! Lets work with this.					
M [∟] M Mar	าx	M M ^L	X M M ^L		
		1⁄4 MN	Λ: ½ M└M: ¼ M└M└		
M ^L M ^L Die	s, M [∟] interfe	eres with n	ormal spinal development		

Sickle Cell	
Anemia	

Case of Recessive lethal in humans; also effect of environment on dominance:

- $\beta^{A} \beta^{A}$ Normal Never sickle
- $\beta^{A} \beta^{s}$ No anemia. Red cells sickle only under low O_{2}
- $\beta^s \beta^s$ Severe often fatal anemia. Cells always sickle

Found in high frequency in tropical (Malaria regions; Africa and Asia)

Tay-Sachs Disease

Mutation in hexosaminase A (HEXA) polypeptide on **Chr. 15**, that helps break down fatty acids in the nerve cells and generally lethal in childhood. Common in Ashkenazi Jewish, French Canadian and Cajun populations

Genotype	HexosaminaseA Production	Phenotype (Symptoms)
HexA/HexA	100%	Normal
HexA/HexA ^T	50%	Normal
HexA ^T /HexA ^T	0%	Lethal

Is this disease "recessive" or "no dominance"?

Examples that don't show dominance (so we do not see 3:1 ratios in F2):

No dominance (partial or incomplete dominance)

Flower color in snapdragons

Co-dominance

MN blood group

Trait measurement changes our perspective of dominance

Manx

Sickle cell anemia

Tay-Sachs disease: deficiency in the production of hexosaminase A– Enzyme production of heterozygote is ½ that of normal homozygote

2) What part of the variation that we see is caused by genetics and what part is caused by environment?						
	Dean and	Dan Identical twins				
	6'3"	6'3"				
	240lbs	190				
	light hair thin	dark hair				
diabetes		no diabetes				
DNA sequencer		DNA sequencer				
	PhD	MD				

Adult on-set diabetes 50% penetrance. This leads to other trait differences

What's the cause of the cute color patterns?

Some	e alleles present at t Drosophila me	he <i>white</i> eye locus of <i>lanogaster</i>
Allele	Name	Eye Color Phenotype
W+	white-wildtype	brick red
W	white	pure white
W ^a	white-apricot	yellow-orange
W ^{bf}	white-buff	light-buff
W ^{bl}	white-blood	yellow-ruby
W ^{cf}	white-coffee	deep ruby
W ^e	white-eosin	yellow-pink
W ^{mo}	white-mottled	light orange mottled
W ^{sat}	white-satsuma	deep ruby
W ^t	white tinged	light pink

5) Multiple genes can interact. Gene interaction is called epistasis.

В_	Black				
bb	chocolate				
E_	Deposition of color				
ee	No color				
	Bb Ee	х	Bb Ee		
	Black		Black		
	This is an F1 x F1 cross. What would the phenotypic ratio in the F2 population be?				
	A) 3:1 D) 9:4:3				
	B) 1:1:1:1	E) 12	2:3:1		
	C) 9:3:3:1				