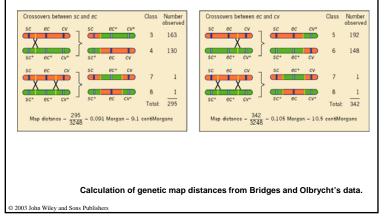
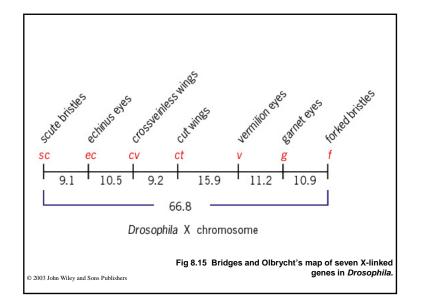
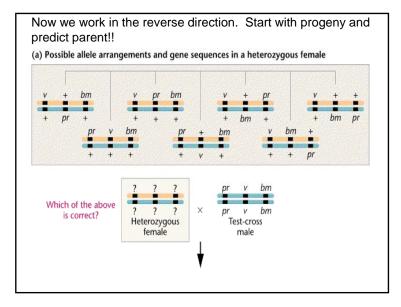

Parents		AAbb	x	aaBE	5	
F1			AaBb			
Test Cross	s the F1	AaBb	x	aabb		
	Α	в	С	D	Е	
AaBb	40	30	20	20	10	
Aabb	10	20	80	30	40	
aaBb	10	20	80	30	40	
aabb	40	30	20	20	10	

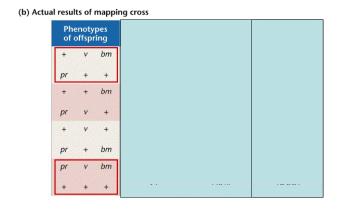


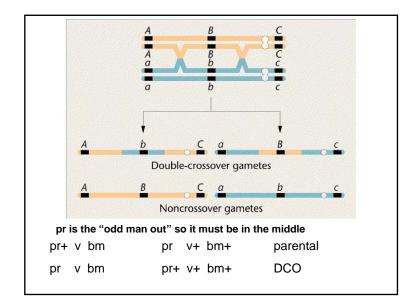



Once you have taken the NCO group and put the genes in the correct order, it is routine to find distances. Here one NCO chromosome is sc - ec - cv, while the other is $sc^* - ec^* - cv^*$.

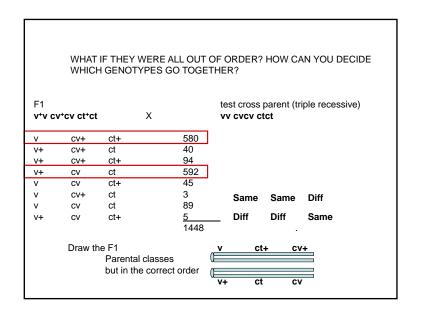
Note: the dominant + will not always all be on the same chromsome!




Middle gene is always the one that switches places when you compare NCO with DCO categories!! You can use this to determine the gene order.



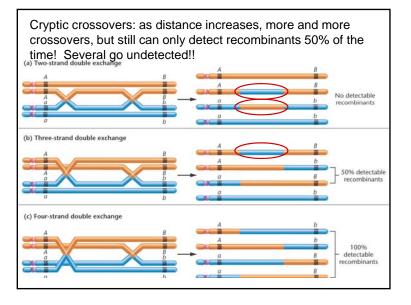
F1	<u>A B C</u>	<u>A B c</u>	<u>A C B</u>
	a b c	a b C	a c b
Test Cross Progeny			
ABC abc	No COs	SCO (B -C)	NCO
Abc aBC	Single (A - B)	DCO	SCO (A - C)
ABc abC	Single (B - C)	NCO	DCO
AbC aBc	Double CO	SCO(A - B)	SCO (C - B)
has the do	rientation of the minant or reces can vary!	•	h chromosome and the order of

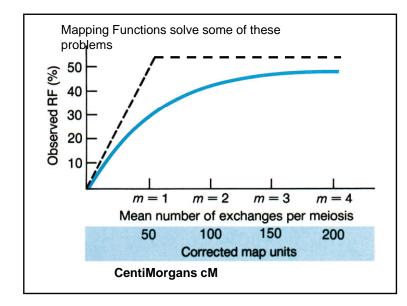


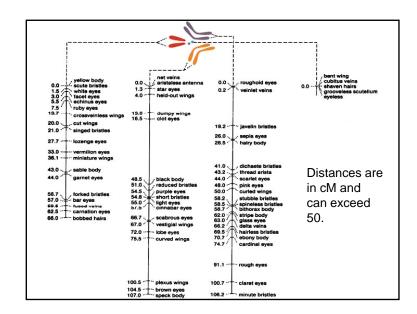
What did the heterozygous parent look like? pr+ v bm on one chromosome and pr v+ bm+ on the other. What's order?? Must compare NCO and DCO classes to see which alleles switched places

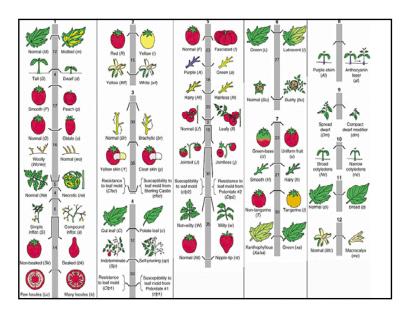
F1			test cross parent (triple recessive)	
v+v c	v+cv ct+ct	Х	vv cvcv ctct	
v	cv+	ct+	580	
v+	CV	ct	592	
v	cv	ct+	45	
v+	CV+	ct	40	
v	cv	ct	89	
v+	CV+	ct+	94	
v	cv+	ct	3	
v+	CV	ct+	<u>5</u> 1448 .	
		parental class		
2) W	hich are c	ico classes?		
			"odd man out method" (Method 2) ass with either dco class e.g.	
v	CV+	ct+	······································	
v	cv+	ct		
Whic	h locus is	odd man out	t? (ct)	
		in middle, or		

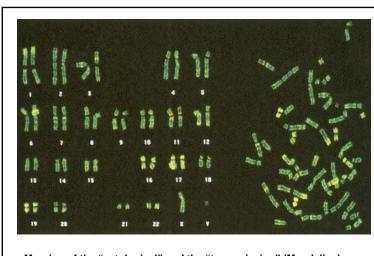
Draw the F1	v	ct+	CV+
Parental classes but in the correct order			
	V+	ct	cv
 Which sco class represents co Which sco class represents co 			
5) What are the distances betwee	en genes	?	
v ct 89+94+3+5 = 19	91	191/14	448 = 0.132 = 13.2%
ct cv 45+40+3+5 = 93	3	93/144	48 = 0.064 = 6.4%
6) Does the frequency of dco class	ss equal t	that predi	icted from sco x sco?
Expected 0.132 x 0.064 Obs	= 0.008	4; 0.0084	4 x 1448 = 12 = 8
Generally fewer obs. dco than exp			
7) Coef of coincidence = 0		= 2/3	
Interference = 1- obs/ex		20 44 -4 -4	
The Interference is the proportion			are missing (we expected 4 more s are close and a CO in one region
"interferes" with a CO in a neighbor	•		•

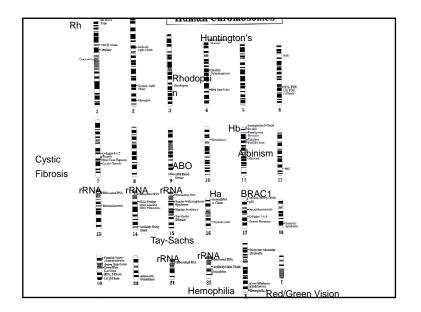

a Bb Cc	x	aa bb c	ж с		
ABC	;	80			
ABC	;	180			
AbC	;	20			
a B C	;	290			
Abc		310			
a B c		30			
a b C		190			
a b c		75			
Which orienta	ation of t	he chromo	somes in the F	1 AaBbCc pare	ent is correct?
Α		в	С	D	E
ACD	a	abc	Acb	<u>caB</u>	<u>CAb</u>

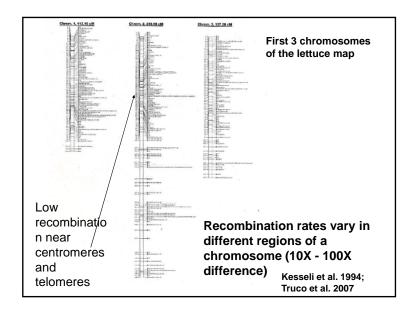

			e F1 look like?		
Aa Bb Cc	x	aa bb c	C		
ABO	C	20			
ABO	•	180			
AbO	•	290			
a B C	2	70			
Abo	;	80			
a B c	;	310			
a b C	;	190			
a b c		30			
Which orient	ation of t	he chromo	somes in the F	1 AaBbCc pare	ent is correct?
Α		в	С	D	E
ABC	_	<u>AbC</u>	Acb	<u>caB</u>	<u>C A b</u>
	_		аСВ		саВ

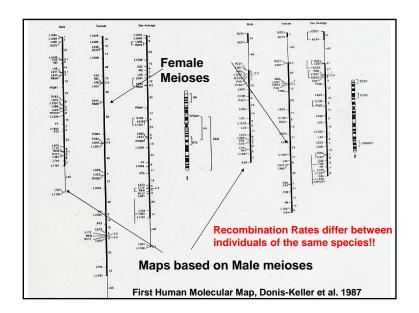

Two Reasons Why Recombination Frequency is Not Linear with Physical Distance

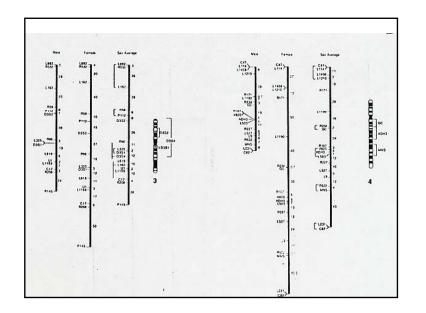

1) "Interference"... when markers are close, one crossover in a region makes it physically difficult to have another close-by in that same region!

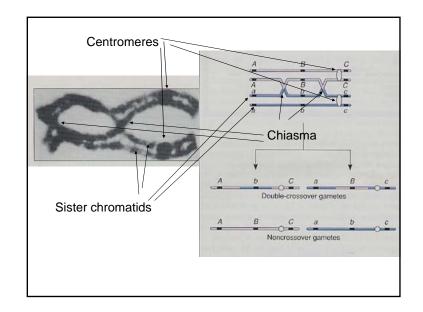

2) Also, the further apart genes are the more likely that cryptic crossovers will go undetected.

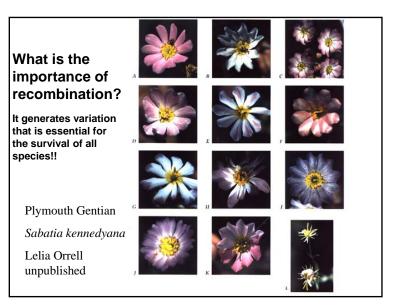


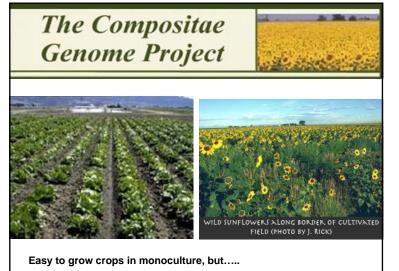





Merging of the "cytological" and the "transmission" (Mendelian) approaches to the study of inheritance!


Recombination	Recombination Rates differ among species!!						
In Sunflower (Mbp)	1 cM =	1.5 million base pairs					
In Humans	1 cM =	1.0 Mbp					
In Corn	1 cM =	1.0 Mbp					
In Tomato	1 cM =	0.5 Mbp (500,000 bp)					
In Drosophila	1 cM =	50,000 bp					
In Yeast	1 cM =	4000 bp					





http://compgenomics.ucdavis.edu/

Monoculture Corn field devastated by Bacterial Wilt disease

Southern Corn Blight wiped out 60% of the US crop in the 1960s, because all the corn was derived from the same genetic stock.

Playing with numbers:

How many genes in the human genome?

25-35,000

How much variation can we create with a few genes each with a couple of variants?

If only 200 of the 30,000 genes were variable (2 alleles each) how many combinations of these different traits could we make in a gamete?

2²⁰⁰ = ?

total # of humans that EVER lived is 13,000,000,000!!

Figure a) Mutations occur regularly, but the only way all three can get into a single individual creating the most fit individual is for the new mutation to occur in an individual that already carried the preexisting good mutation.

Figure b) Mutations occur in separate individuals, but through sexual reproduction and recombination, can quickly become established in a single individual.