Global Viral Diversity

60 known families 20 affect humans (50 distinct types of adenoviruses infect humans!). With about 10 million species of bacteria and maybe 10 host specific phage/species (E. coli has 50) = 100 million phage species!!

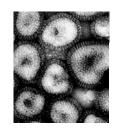
Classification

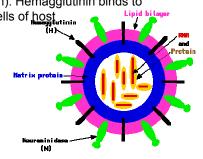
1) DNA vs RNA

2) Single stranded (ss) vs double stranded (ds)

3) For RNA, RNA replicase/RNA dependent RNA polymerase (RNA as template for RNA)

vs.


Reverse transcriptase (RNA as a template for DNA)


Table 1. Viral Diversit	/			
Genetic Material	Families	Example Families	Example Genus	Example Viruses
dsDNA	20	Herpesviridae	Rhadinovirus	Human herpesvirus 8
ssDNA	5	Parvoviridae	Dependovirus	Adeno-associated virus
BNA/DNA*	5	Retroviridae	Lentivirus	HIV-1
dsBNA	6	Reoviridae	Rotavirus	Human rotavirus group
-ssRNA	7	Orthomyxoviridae	Influenzavirus A	Influenza A virus
		Paramyxoviridae	Morbillivirus	Measles virus
		Filoviridae	Ebolavirus	Zaire Ebola virus
	18	Picornaviridae	Enterovirus	Poliovirus

Influenza virus: -ssRNA of 8 short segments (genes)

Epidemics for 1000s of years, but the influenza A (flu) versions are continuously introduced from animal reservoirs.

Antigen surface drifts (gradual small adaptive changes in surface proteins hemagglutinin, H and neuraminidase, N, selected by Natural Selection): Hemagglutinin binds to glycoproteins on epithelial cells of host Lipid bilger

•HA encodes hemagglutinin (about 500 molecules of hemagglutinin are needed to make one virion)

•NA encodes neuraminidase (about 100 molecules of neuraminidase are needed to make one virion).

•NP encodes nucleoprotein.

•M encodes two matrix proteins (the M1 and the M2) by using different reading frames from the same RNA segment (about 3000 matrix protein molecules are needed to make one virion).

•NS encodes two distinct non-structural proteins (NS1 and NEP) by using different reading frames from the same RNA segment.

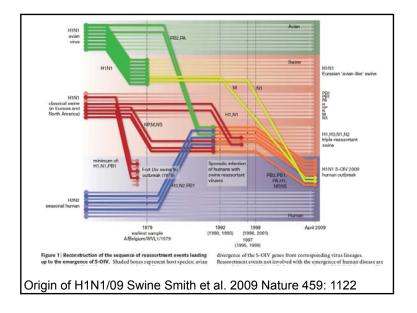
·PA encodes an RNA polymerase.

•PB1 encodes an RNA polymerase and PB1-F2 protein (induces apoptosis) by using different reading frames from the same RNA segment.

•PB2 encodes an RNA polymerase.

Influenza virus:

Flu shots are designed for annual drifts


Antigen surface shifts (new version from bird reservoirs), 1957 Asian flu H2N2 (differs from H1N1 by 35% and 58% of the amino acids); 1968 Hong Kong flu H3N2, 1997 Hong Kong H5N1*). Recombination important.

The worst epidemic was Spanish flu 1918 **H1N1** with 20-40 million killed (600,000 Americans)!!!

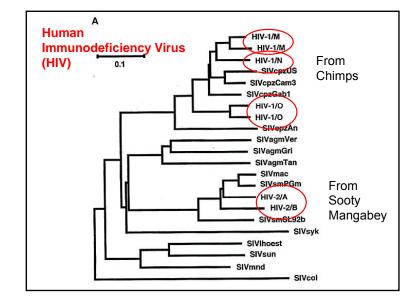
1aa change in H receptor shifted the virus from recognizing α 2,3 sialic acid receptor in birds to α 2,6 sialic acid receptor in humans!

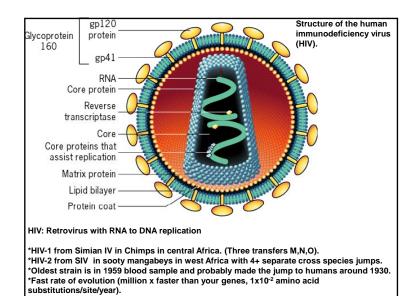
Date Strain Subtype Notes

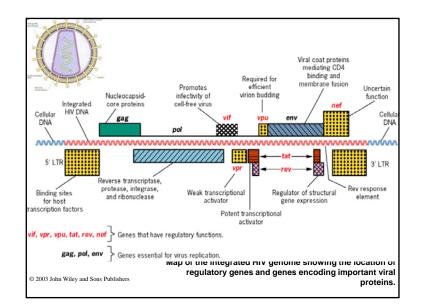
1918	Spanish Flu	H1N1 pandemic of Spanish Flu				
1957	A/Singapore/57	H2N2 pandemic of "Asian"				
1962	A/Japan/62	H2N2 epidemic				
1964	A/Taiwan/64	H2N2 epidemic				
1968	A/Aichi/68	H3N2 pandemic of "Hong Kong"				
1976 1977 years	A/New Jersey/76 Russian/77 old	H1N1 swine flu in Army recruits H1N1 age restricted <25				
Recombination and jumping hosts creates "shifts" and pandemics						
Mutations within a host strain creates "drifts" and						

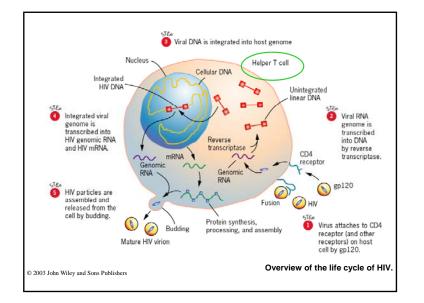
Α	Hemagglutinin	swine (H1)	North America
4	Neuraminidase	swine (N1)	Europe
Α	RNA polymerase subunit PA ^{[43][44]}		North America
B1	RNA polymerase subunit PB1 ^[45]		1993 H3N2 strain
B2	RNA polymerase subunit PB2 ^[46]		North America
Р	Nucleoprotein ^[47]	swine	North America
	Matrix protein M1, M2	swine	Eurasia
	P Non-structural proteins NS1,	!	North America
EP (r	Nuclear Export Protein) ^{[48][49]}	swine	North America

Case Studies of Human Viruses


Herpes viruses: dsDNA, huge 100kb with 70 genes including recent human genes!!!


Extremely old (millions of years) present in common ancestors of mammals and most are "benign". Only very rare cases of jumping species (one or two possible case in all of mammals).


Mutation rate is slow 3×10^{-8} (10^5 or 10^6 times slower than HIV).


Ebola: -ssRNA

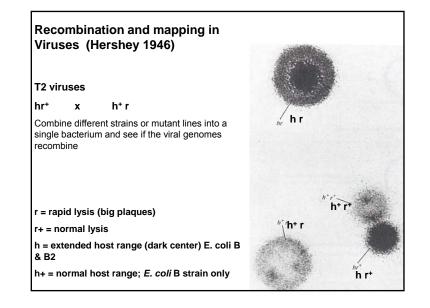
First appeared in 1976 in Sudan and Zaire. Reappeared in same or neighboring areas1979, 1995, 2000, 2002, 2003. "Hemorrhagic Fever" Threatens chimp and gorilla populations (1000s died). Maybe originated in duiker (antelope) populations. Four separate versions each from different reservoir. Fatality rates of 50%-90%!!!

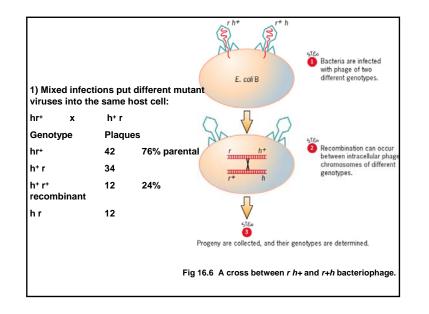
Why is HIV so difficult to control?

1) High mutation rates, RT has 10x error rate of normal polymerases.

2) Hotspot for errors is the *env* gene that makes the gp120 proteins on viral surface. These are constantly changing and avoid detection.

3) Favorite target of HIV for incorporation in to host genome is the T helper cells. This compromises immune response.


4) HIV favors integrating into active genes once in cell. This guarantees transcription and avoidance of degradation.

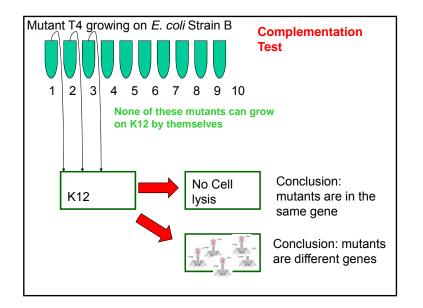

We discussed the reasons that bacteria evolve so quickly.

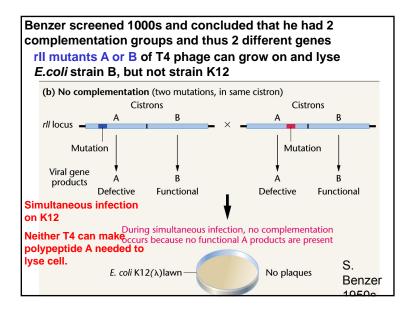
Do we see some similar reasons that explain why viruses also evolve quickly?

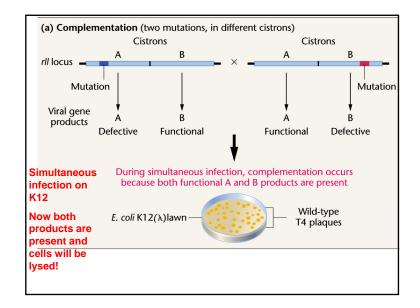
Huge numbers, high mutation rates and strong selection.

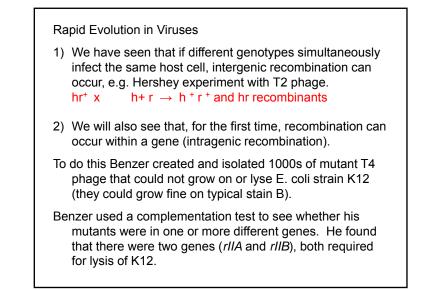
How about exchanging genes (recombination) in viruses?

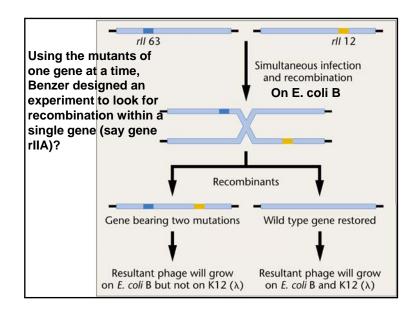
Benzer's T4 mutants

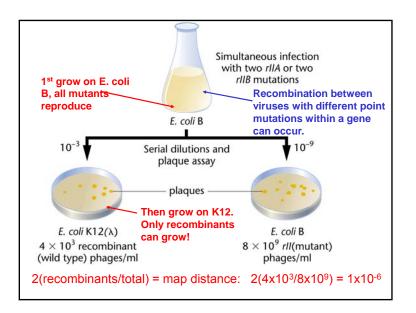

1) Generate mutants with UV, X-ray or mutagenic chemicals

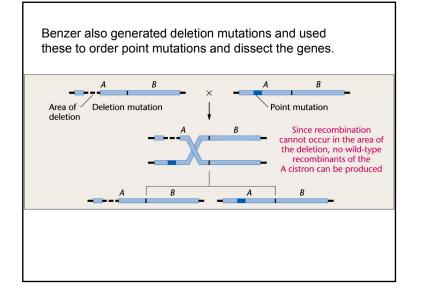

2) Dilute and grow on a "lawn" of E.coli strain B.

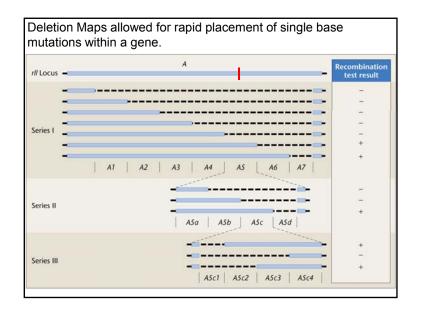

3) Test each colony on Strain K12.

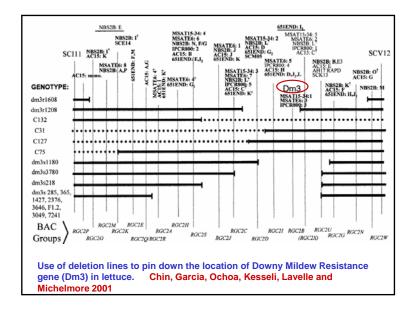

Any line that can not grow on K12, has a mutation that prevented its use of this host.

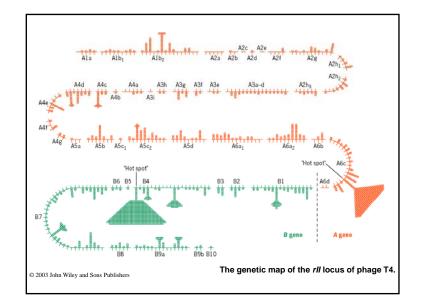

Benzer generated 1000s of lines that could grow on Strain B but not K12. He performed complementation tests to determine if these mutants were for the same gene or different genes











Complementation Test Purpose:	Recombination, Fine Mapping Purpose:	In the analysis of rII mutants of T4 phage, complementation testing yielded the following results:
To screen unknown mutants that give the same phenotype (can not lyse K12) to see if they are in the same gene Procedure: Simultaneous infection of 2 T4 mutants on <i>E. coli</i> K12; <u>Neither can</u> grow or lyse cells of K12 on its own.	To map location of mutations to a known gene.	Simultaneous Infection Results (lysis = +) of 2 mutants on E.coli K12
	Procedure:	1, 2 +
	Simultaneous infection of 2 T4 mutants on <i>E. coli</i> B; <u>both can grow</u> on this strain.	1, 3 +
		1, 4 -
	Recombination can occur between the T4 mutants while they are in strain B.	1, 5 -
Results:		Predict the results for the following:
1) If phage can not lyse cells, the	Results:	A B C D E
mutations must be in same gene 2) If phage can lyse cells, mutations in different genes	Screen for recombinants on strain K12. Mutants far apart will show	2,3 + - +
	more recombinants than close ones	2,4 - + - + +
		3, 4 - +